Genetic Resistance of Lactuca spp. against Fusarium oxysporum f. sp. lactucae Race 1

Author:

Murray Jesse J.1,Hisamutdinova Gulnoz1,Sandoya Germán V.1,Raid Richard N.2,Slinski Stephanie3

Affiliation:

1. Horticultural Sciences Department, Everglades Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences, Belle Glade, FL

2. Plant Pathology Department, Everglades Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences, Belle Glade, FL

3. Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ

Abstract

Fusarium wilt of lettuce is caused by the pathogen Fusarium oxysporum f. sp. lactucae (Fol) and is a growing threat to global lettuce production. Fol was first detected in Florida in 2017 and was subsequently confirmed as race 1. Management strategies for this long-persisting soil pathogen are limited, time-consuming and expensive, and they may lack efficacy. Identifying diverse sources of genetic resistance is imperative for breeding adapted cultivars with durable resistance. The objectives of this study were to identify sources of resistance against a race 1 isolate of Fol in Florida, delineate the relationship between foliar and taproot symptoms, and investigate the inheritance of resistance and partial resistance in two F2 populations. Thirteen experiments were conducted in greenhouse and field locations to characterize the diversity of genetic resistance in the genus Lactuca. Leaf cultivars Dark Lollo Rossa and Galactic; romaine breeding lines 43007, 60182, and C1145; and iceberg breeding line 47083 consistently exhibited low foliar and taproot disease symptoms. Resistance was not identified among the wildtype Lactuca or primitive plant introductions (PI) in this study based on taproot symptoms. An additional test was conducted to study the segregation pattern of Fol resistance between one resistant and one susceptible accession (R × S) and one partial resistant and one susceptible accession (PR × S). The F2 population from ‘60182 × PI 358001-1’ fit the expected segregation ratio for a single recessive locus model, whereas the ratio for ‘Dark Lollo Rossa × PI 358001-1’ did not fit either recessive or dominant single locus models. These sources of resistance are potential candidates for developing commercial cultivars with multiple resistance loci against Fol race 1, especially for the Florida lettuce production system.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3