Stratified Substrates Can Reduce Peat Use and Improve Root Productivity in Container Crop Production

Author:

Fields Jeb S.1,Criscione Kristopher S.1

Affiliation:

1. Hammond Research Station, Louisiana State University Agricultural Center, 21549 Old Covington Highway, Hammond, LA 70403, USA

Abstract

Peat use in horticulture continues to be scrutinized as consumers are becoming increasingly aware of the environmental sustainability concerns associated with peat. Thus, the horticultural industry is driven to search for peat alternatives. Substrate stratification (i.e., vertical layering of unique media atop another in a singular container) has been studied in nursery substrates and has demonstrated improved resource efficiency with regard to water and fertilizer inputs. However, minimal research has evaluated using the concept of stratified substrates as an attempt to reduce peat inputs in greenhouse production. Hence, the objective of this study was to identify if stratifying costly floriculture media atop of low-cost pine bark can reduce peat use, reliance, and cost within the floriculture industry. A floriculture crop, Petunia hybrid ‘Supertunia Honey’, was grown in two distinct substrate treatments: 1) nonstratified (commercial peat-based floriculture substrate) and 2) stratified peat-based substrate layered atop aged pine bark (1:1 by volume) under two different irrigation schedules. Crop growth was evaluated, including growth indices, shoot physiological responses, and root growth measurements. Substrate hydraulic properties such as matric potential and volumetric water content were monitored over time. The results demonstrated that a petunia crop can be produced in stratified substrate systems and yield similarly sized and quality crops as traditionally grown plants. Furthermore, the stratified substrate-produced crop had improved root productivity, yet less bloom, when compared with nonstratified-grown crops.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3