Response of Evapotranspiration of Viburnum odoratissimum to Canopy Closure and the Implications for Water Conservation during Production and in Landscapes

Author:

Beeson Richard C.

Abstract

Transpiration of woody shrubs appears to increase with decreases in plant density within production beds as plants are randomly removed for sale. To assess potential impact on irrigation management, this observation was tested with market-sized plants in suspension lysimeters at specific levels of canopy closure. Canopy closure was defined as the percentage of cumulative projected two-dimensional canopy area of individual plants per unit ground area on which they were placed. In 1997, evapotranspiration (ETA) of plants in 26.6-L containers was comparable from isolated plants up to 67% canopy closure. At full canopy closure (100%), ETA was 40% less than 67% closure or lower. When repeated in 2003, results were similar for similar-sized plants and for two sizes smaller (11.4- and 3.8-L containers). ETA response to canopy closure was independent of height from 0.5 to 1.5 m tall. At full canopy closure, whole plant transpiration was equivalent to that measured from only the upper 40% (by height) of the canopy under full sun. This was independent of plant size. Implications for water conservation during production and plants’ irrigation needs in landscapes are discussed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3