Comparative Organogenic Response of Six Clonal Apple Rootstock Cultivars

Author:

Sun Qingrong,Sun Meijuan,Sun Hongyan,Bell Richard L.,Li Linguang,Zhang Wei,Tao Jihan

Abstract

The organogenesis potential is different among cultivars and must be optimized for individual genotype. Shoot organogenesis capacity from in vitro leaves and root organogenesis capacity of in vitro shoots in six clonal apple rootstock cultivars were compared. The shoot organogenesis capacity was highly genotype dependent. ‘GM256’ was found to be the most responsive genotype for shoot regeneration from leaf explants among the cultivars, showing high regeneration percentage on all tested media. The effects of basal medium composition and cytokinins on shoot regeneration were different depending on rootstock genotype. Optimum regeneration occurred on Murashige and Skoog (MS) basal medium for ‘71-3-150’, and optimum regeneration occurred on Quoirin and Lepoivre (QL) basal medium for ‘60-160’ and ‘ПБ’. Thidiazuron (TDZ) was more effective than 6-benzylaminopurine (BA) for Malus prunifolia (Y), whereas TDZ and BA were not significantly different for the other cultivars. All rootstock cultivars showed high root organogenic capacity. The percentage of rooting reached more than 90% and the mean root number per plantlet ranged from three to five. The optimum rooting medium was different for different rootstock cultivars. Optimum root organogenesis occurred on half-strength QL medium for ‘GM256’ and ‘Y’, and for ‘ПБ’ and ‘JM7’ on one-quarter-strength MS medium.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3