Physiological, Morphological, and Energy-use Efficiency Comparisons of LED and HPS Supplemental Lighting for Cucumber Transplant Production

Author:

Hernández Ricardo,Kubota Chieri

Abstract

To increase the available photosynthetic photon flux (PPF) for plant growth, greenhouse growers sometimes use electric lighting to supplement solar light. The conventional lighting technology used to increase PPF in the greenhouse is high-pressure sodium lamps (HPS). A potential alternative to HPS is high-intensity light-emitting diodes (LEDs). The objective of this study is to compare supplemental LED lighting with supplemental HPS lighting in terms of plant growth and morphology as well as discuss the energy use efficiencies of the fixtures. There were three light treatments: 1) blue LED (peak wavelength 443 nm); 2) red LED (peak wavelength 633 nm); and 3) HPS, to provide 3.7 ± 0.2 mol·m−2·d−1 (background solar radiation of 6.3 ± 0.9 mol·m−2·d−1). Cucumber (Cucumis sativus) plants at the transplanting stage (26 to 37 days) under HPS had 28% greater dry mass than did plants under the LED treatments. This can be attributed to the higher leaf temperature under the HPS treatment. No differences were observed in growth parameters (dry mass, fresh weight, or number of leaves) between the blue and red LED treatments. Plants under the blue LED treatment had greater net photosynthetic rate and stomatal conductance (gS) than those under the red LED and HPS treatments. Plants under the blue LED and HPS treatments had 46% and 61% greater hypocotyl length than those under the red LED, respectively. The fixture PPF efficiencies used in the experiment were 1.9, 1.7, and 1.64 μmol·J−1 for the blue LED, red LED, and HPS treatments, respectively; however, the fixture growing efficiency (g·kWh−1) of HPS was 6% and 17% greater than the blue LED and red LED treatment, respectively. In summary, supplemental red LED produced desirable plant compactness and HPS had greater fixture growing efficiency than LEDs.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3