Yield and Leaf Quality of Processing Spinach under Deficit Irrigation

Author:

Leskovar Daniel I.,Piccinni Giovanni

Abstract

Restrictions placed on water usage for farmers have prompted the development of irrigation management projects aiming at water savings of economically important crops. The objective of this work was to determine yield, water use efficiency, and leaf quality responses to deficit irrigation rates of processing spinach (Spinacea oleracea L.) cultivars. Three irrigation treatments were imposed with a center pivot system, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Commercial cultivars used were `DMC 09', `ASR 157', and `ACX 3665'. Leaf quality was significantly affected by deficit irrigation rate and cultivar. Leaf yellowness was highest at 50% ETc, and was more evident for `ACX 3665'. The percent excess stem (>10 cm) was higher at 100% ETc. This response was greater in `ACX 3665' than in `ASR 157' and `DMC 09'. Marketable yields were significantly higher for `ASR 157' at either 100% or 75% ETc rates, compared to `DMC 09' and `ACX 3665'. High water use efficiency was also measured at 75% ETc for `ASR 157'. Minimum canopy temperature differences were detected among the irrigation treatments. This work demonstrated that it is possible to reach a 25% water savings in one season, without reducing yields when using vigorous cultivars.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3