Evaluation of Physiological Changes in Flowering Dogwood under Drought Conditions in a Container Production System

Author:

Neupane Krishna1,Witcher Anthony1,Baysal-Gurel Fulya1

Affiliation:

1. Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37110, USA

Abstract

Flowering dogwoods (Cornus florida L.) are drought-sensitive ornamental trees. Two trials (in 2021 and 2022) were conducted to evaluate the physiological changes induced as a result of drought conditions. In an outdoor setting, trees were organized in a randomized complete block design. Three different irrigation treatments were applied at 125%, 25%, and 10% (control, moderate, and severe drought, respectively) of their daily water usage (evapotranspiration). The two physiological parameters normalized difference vegetation index (NDVI) and leaf moisture potential were collected every week for 1 month. Plant growth data (height and width) were collected at the beginning and the end of the study. Normalized difference vegetation index data collected with a handheld NDVI meter and a Sentera NDVI sensor mounted on an unmanned aerial vehicle (UAV) were correlated for ground truthing. In 2021, control plants had a greater plant width increase and shoot biomass, whereas no significant differences in growth were observed among the treatments in 2022. In both trials, the NDVI was the greatest for control plants compared with the other treatments on days 7, 14, 21, and 27. In both studies, no differences were observed for leaf moisture potential on day 7, but was greatest for controls on days 14, 21, and 27. The correlation between the handheld NDVI and the UAV NDVI was found to be strong and positive, ranging from 0.84 to 0.93 (trial 1: P ≤ 0.0001, P ≤ 0.0001, P = 0.0002, and P ≤ 0.0001; trial 2: P = 0.0002, P ≤ 0.0001, P ≤ 0.0001, and P ≤ 0.0001 for weeks 1–4, respectively). This information will be applicable to understanding the physiology of the crop and the inclusion of emerging technology in crop production and monitoring.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference99 articles.

1. Biomass energy and the environmental impacts associated with its production and utilization;Abbasi T,2010

2. Genetic analysis of drought tolerance in adapted exotic crosses of maize inbred lines under managed stress conditions;Adebayo M,2014

3. Agresti A. 2003. Categorical data analysis. Wiley, Hoboken, NJ, USA. https://doi.org/10.1002/sim.1589.

4. Significance and limits in the use of predawn leaf water potential for tree irrigation;Améglio T,1999

5. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat;Bajji M,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3