Interactive Effects of Grafting and Manganese Supply on Growth, Yield, and Nutrient Uptake by Tomato

Author:

Savvas Dimitrios,Papastavrou Dimitrios,Ntatsi Georgia,Ropokis Andreas,Olympios C.,Hartmann Hagen,Schwarz Dietmar

Abstract

Tomato (Solanum lycopersicum L. cv. Belladona F1) plants were either self-grafted or grafted onto the rootstock ‘He-Man’ and grown in recirculating nutrient solution with low, standard, or high manganese (Mn) concentrations (2, 15, and 100 μM, respectively). The concentrations of all nutrients except Mn were identical in all treatments. The objectives of the experiment were to test whether grafted tomato plants have a higher or lower ability to withstand deficient or toxic levels of Mn in the root zone and to study the effects of grafting on nutrient uptake and translocation to the aerial organs. Both excessive and insufficient Mn concentrations in the root zone significantly reduced the number of fruit per plant, whereas mean fruit weight was unaffected by external Mn concentrations ranging from ≈1 to 100 μM. The excessive external Mn concentration caused the leaf Mn concentration to increase beyond the critically high level at the expense of leaf and root iron and zinc concentrations but without significant differences between the grafting treatments. The fruit yield of plants grafted onto ‘He-Man’ was significantly lower than that of self-grafted plants when the Mn concentration in the root zone was excessively high. This response might be associated with the lower translocation of magnesium (Mg) to the leaves of plants grafted onto ‘He-Man’ in comparison with the self-grafted plants, resulting in lower Mg/Mn ratios in the leaves. Grafting onto ‘He-Man’ also restricted the leaf and root iron and copper concentrations but enhanced those of potassium. Overall, tomato cv. Belladona proved to be more tolerant to excess Mn than to Mn deficiency in terms of vegetative growth and fruit yield.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3