Author:
Dag Arnon,Erel Ran,Ben-Gal Alon,Zipori Isaac,Yermiyahu Uri
Abstract
The global production of olives (Olea europaea L.) has increased rapidly over the last decade as a result of the expansion of orchards with high tree densities. Most olives are propagated from rooted cuttings. The present study evaluated the propagation rate of rooted cuttings as a function of the nutritional status of the stock trees. Rooting ability was evaluated for cuttings taken from container-grown stock plants exposed to eight concentrations of nitrogen (N) (ranging from 0.4 to 14.1 mm), seven concentrations of phosphorus (P) (ranging from 0.01 to 0.62 mm), and five concentrations of potassium (K) (ranging from 0.25 to 5.33 mm). Increases in N level negatively affected rooting rate and cutting survival. Propagation success was increased threefold as N in irrigation water was reduced from the highest to the lowest treatments. Enhanced root development under low N concentrations resulted in higher root weight compared with the high N concentrations. The high concentration of N fertilization negatively affected the propagation rate but was not reflected in N concentration of diagnostic leaves. There was, however, a significant negative correlation between N in twigs and propagation rate. Regarding response to K concentration, no effect was found on rooting rate or cutting survival. Except for reduced rooting at the lowest concentration, P had a negligible effect on rooting rate. The experimental results indicate the need to avoid overfertilization of olive stock trees with N to promote successful propagation.
Publisher
American Society for Horticultural Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献