Estimating Fresh Weight of Individual Pea Shoots Using Measurable Morphological Characteristics

Author:

Kong Yun,Kong Xiangyue,Zheng Youbin

Abstract

Nondestructive estimation of individual shoot fresh weight (FW) from its measurable morphological traits is useful for a wide variety of purposes in pea shoot production. To predict individual shoot FW, nine regression models in total were developed, including two power models using stem diameter (SMD) or stem length (SML) as a variable, and seven linear models using part or all the following variables: SMD, SML, leaflet length (LL), leaflet width (LW), stipule length (SEL), and stipule width (SEW). Among the nine models, the 6-variable linear equation had the highest coefficient of determination, R2 = 0.92, indicating it is most effective at explaining the variation in FW. The linear equations including only one variable, SMD or SML, were equally the least effective as nonlinear equations (i.e., power models). This finding suggests that there was a linear rather than nonlinear relationship between FW and the morphological variables. During stepwise regression, SEW and LW together were first removed from the 6-variable linear models without reducing the R2, and then SEL, SMD, SML were further removed one-by-one, which reduced the R2 from 0.92 to 0.90, 0.85, and 0.71, respectively. The result suggests that SMD, SML, SEL, and LL were the most important four predictor variables for multivariable linear regression models to estimate FW, an idea that was also supported by path analysis. For the four linear models with 1–4 predictor variables from stepwise regression, the prediction accuracy of FW was evaluated based on the agreement between the predicted and measured values using another independent dataset. The 4- and 3-variable linear models (i.e., FW = −1.437 + 0.276 SMD + 0.010 SML + 0.022 LL + 0.013 SEL and FW = −1.383 + 0.308 SMD + 0.011 SML + 0.030 LL, respectively) were selected for their more accurate prediction than 1- and 2-variable linear models and relatively simpler forms than a 6-variable linear model. Although the prediction accuracy can be potentially affected by air temperature, light conditions, and harvesting time, the multilinear regression model is an effective approach for estimating fresh weight of individual pea shoots using its measurable morphological traits.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3