Using Color Infrared Imagery to Detect Sooty Mold and Fungal Pathogens of Glasshouse-propagated Plants

Author:

Summy Kenneth R.,Little Christopher R.

Abstract

Fungi are major biotic constraints for optimum production and quality of glasshouse plants. When plants are infested with sooty mold (Capnodium spp.) or infected with pathogens, the reflected wavelengths of the electromagnetic spectrum are altered. Spectroradiometric measurements and color infrared (CIR) images of control, honeydew-coated, and sooty mold-infested saplings and individual leaves from trifoliate orange (Poncirus trifoliata), sour orange (Citrus aurantium), ‘Valencia’ orange (C. sinensis), and ‘Bo’ tree (Ficus religiosa) were obtained. Grapefruit saplings and individual leaves infected with Mycosphaerella citri (greasy spot) were imaged under glasshouse conditions. Similarly, muskmelon foliage showing low and high levels of powdery mildew (Sphaerotheca fuliginea) disease severity were analyzed. When examining individual leaves, all fungal biotic stressors generally resulted in variable spectral reflectance data, especially in the blue (450 nm) and green (550 nm) wavelengths; however, values in the red (650 nm) tended to increase and values in the near-IR (850 nm) tended to decrease with stress. Near-IR/red image ratios were significantly reduced (P < 0.05) in stressed whole plant foliage and individual leaves relative to healthy controls. The accumulation of insect honeydew (which occurs before sooty mold infestation) significantly increased (P < 0.05) near-IR reflectance values and near-IR/red ratios in ‘Valencia’ orange and near-IR/ratios in ‘Bo’ tree foliage and individual leaves. Image acquisition and enhancement techniques may prove useful in large-scale production greenhouses where existing infrastructure and high plant populations require high throughput data analysis and identification of biotic stressors.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3