Effect of Fungicides and Application Intervals for the Control of Black Spot of Roses

Author:

Jennings Christina1,Simmons Terri1,Parajuli Madhav1,Liyanage Kumuditha Hikkaduwa Epa1,Baysal-Gurel Fulya1

Affiliation:

1. Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37110, USA

Abstract

The efficacy of the fungicide pydiflumetofen + difenoconazole (Postiva) was evaluated at varying application rates and intervals to control black spot disease (Diplocarpon rosae) in rose (Rosa spp. ‘Coral Drift’). Container-grown roses were arranged in a completely randomized design with five single-plant replications. Experiments were conducted under greenhouse and shade-house conditions (56% shade) in 2021/2022 and 2023. Black spot disease in roses was developed naturally. Pydiflumetofen + difenoconazole at 1.1 , 1.6, and 2.2 mL⋅L–1, and standard fungicide azoxystrobin + benzovindiflupyr (Mural) at 0.5⋅g L–1 were sprayed on foliage to runoff on a 2- or 4-week interval. Plants that were not treated with fungicide served as the controls. Plants were evaluated weekly for disease severity (0%–100% foliage affected) and defoliation (0%–100% defoliation). The season-long area under the disease progress curve (AUDPC) and area under the defoliation progress curve (AUDFC) were calculated for the evaluation period. Pydiflumetofen + difenoconazole reduced significantly black spot disease severity, AUDPC, defoliation, and AUDFC both in greenhouse and shade-house conditions compared with control plants, and was as effective as azoxystrobin + benzovindiflupyr. All the application rates and intervals of pydiflumetofen + difenoconazole were equally effective in reducing black spot severity and AUDPC. Our findings suggest that pydiflumetofen + difenoconazole at the lowest rate with the longest application interval is the most cost-effective, and has similar efficacy as treatments with higher rates and more frequent intervals.

Publisher

American Society for Horticultural Science

Reference22 articles.

1. Fungal species associated with black spot disease in rose;Asmadi NENM,2020

2. Baysal-Gurel F, Phillips CA. 2019. Rose black spot. Extension Publications. 141. https://digitalscholarship.tnstate.edu/extension/141. [accessed 5 Jan 2024].

3. Management of black spot of rose with winter fungicide treatment;Bowen KL,2001

4. Management of blackspot of rose in the landscape in Alabama;Bowen KL,1995

5. Fungicide resistance management: Maximizing the effective life of plant protection products;Corkley I,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3