Strip Tillage and Oat Cover Crops Increase Soil Moisture and Influence N Mineralization Patterns in Cabbage

Author:

Haramoto Erin R.,Brainard Daniel C.

Abstract

Strip tillage (ST) is a form of conservation tillage in which disturbance is limited to the crop rows while the rest of the soil remains undisturbed. Compared with conventional, full-width tillage (CT), ST may reduce tillage costs, protect soil from erosion, and benefit cool-season crops including cabbage (Brassica oleracea L. var. ‘capitata’) by improving water retention, reducing soil temperatures, and improving the synchrony of inorganic nitrogen (IN) supply with crop demand. Field experiments were conducted in 2010 and 2011 in central Michigan to assess the effects of tillage (CT vs. ST) and a preceding cover crop (none vs. oats, Avena sativa L. var. ‘Ida’) on soil temperature, moisture, N dynamics, and yields in transplanted cabbage. Oats were sown in April and terminated 2 to 3 weeks before cabbage transplanting in early July. In-row (IR) soil moisture, temperature, and IN content were assessed from transplanting until cabbage harvest in October. In 2010, IR soil moisture was higher season-long in ST compared with CT and in oat compared with non-oat treatments, but these effects were not detected in 2011. Tillage and oat residue had little or no effect on IR soil temperature. Shortly after tillage in both years, soil IN availability was greater in CT treatments without oats compared with both ST treatments and CT with oats. However, these differences dissipated after 3 to 4 weeks, and hypothesized improvements in N release patterns under ST were not observed. No differences in cabbage marketable yield were detected in either year, although the proportion of plants that produced a marketable head was lower in cover-cropped plots in 2010. These findings suggest that soil conservation and input savings potentially associated with ST production systems may be attained without a yield penalty. More research is needed to understand and optimize cover crop management in ST systems to realize potential benefits in N use efficiency, moisture retention, and soil temperature moderation.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3