Mechanical Conditioning of Tomato Seedlings Improves Transplant Quality without Deleterious Effects on Field Performance

Author:

Garner Lauren C.,Björkman Thomas

Abstract

Excessive stem elongation reduces plant survival in the field and hinders mechanical transplanting. Mechanical conditioning is an effective method for reducing stem elongation during transplant production. This investigation examined the consequences of mechanical conditioning, using brushing and impedance, on subsequent field performance of tomatoes (Lycopersicon esculentum Mill.). Mechanically conditioned transplants of processing tomatoes resumed growth after transplant shock as quickly as did untreated plants, and subsequent canopy development was also equal. In 4 years of field trials, yield was not reduced by mechanical conditioning. Transplants for fresh-market tomatoes may be more sensitive to injury than those for processing tomatoes because they flower sooner after the conditioning treatments. Nevertheless, neither earliness nor defects in the fruits of the first cluster were affected by mechanical conditioning. Early and total yields were equal in both years that fresh-market crops were tested. Thus, there were no adverse effects on field performance of either processing or fresh-market tomatoes as a result of reducing stem elongation by mechanical conditioning before transplanting. Improved wind tolerance was tested both in a wind tunnel and in the field. In wind-tunnel tests, brushed and impeded plants resisted stem bending at wind speeds 4 to 12 km·h–1 higher than did untreated plants. A 70 km·h–1 wind after transplanting killed 12% of untreated plants but only 2% of treated plants. Mechanical conditioning with brushing and impedance produced transplants with desirable qualities without adverse effects on field performance.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3