Epidermal Segments: A Useful Model System for Studying Water Transport through Fruit Surfaces

Author:

Harz Martin,Knoche Moritz,Bukovac Martin J.

Abstract

Water conductance of the cuticle of mature fruit of apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf., `Golden Delicious' Reinders/`Malling 9' (M.9)], sweet cherry (Prunus avium L., `Sam'/`Alkavo'), grape (Vitis vinifera L.), pepper (Capsicum annuum L. var. annuum Fasciculatum Group, `Jive'), and tomato (Lycopersicon esculentum Mill.) was de ter mined using excised epidermal segments (consisting of epidermis, hypodermis, and some cell layers of parenchyma) and enzymatically isolated cuticular membranes (CM) from the same sample of fruit. Segments or CM were mounted in diffusion cells and transpiration was monitored gravimetrically. Conductance (m·s-1) was calculated by dividing the flux of water per unit segment or CM area (kg·m-2·s-1) by the difference in water vapor concentration (kg·m-3) across segments or CM. Transpiration through segments and through CM increased with time. Conductance of segments was consistently lower than that of newly isolated CM (3 days or less). Conductance decreased with increasing time after isolation for apple, grape, or sweet cherry CM, and for sweet cherry CM with increasing temperature during storage (5 to 33 °C for 4 days). There was no significant effect of duration of storage of CM on conductance in pepper or tomato fruit. Following storage of CM for more than 30 days, differences in conductance between isolated CM and excised segments decreased in apple, grape, and sweet cherry, but not in pepper or tomato. Use of metabolic inhibitors (1 mm NaN3 or 0.1 mm CCCP), or pretreatment of segments by freezing (-19 °C for 18 hours), or vacuum infiltration with water, had no effect on conductance of apple fruit segments. Our results suggest that living cells present on excised segments do not affect conductance and that epidermal segments provide a useful model system for quantifying conductance without the need for isolating the CM. Chemical names used: sodium azide (NaN3); carbonylcyanide m-chlorophenylhydrazone (CCCP).

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3