Densely Planted Okra for Destructive Harvest: III. Effects of Nitrogen Nutrition

Author:

Kahn Brian A.,Wu Yaying,Maness Niels O.,Solie John B.,Whitney Richard W.

Abstract

Research was conducted to develop a cultural system that would permit a destructive mechanical okra [Abelmoschus esculentus (L.) Moench] harvest. Okra grown at a highly dense (HD) plant population of 25 × 23 cm and destructively harvested by machine was compared with control plants spaced at 90 × 23 cm and repeatedly and non-destructively harvested by hand. The control N fertilization regime was 45 kg·ha-1 of N preplant, followed by one or two topdressings, each with 22 kg·ha-1 of N. Treatments applied to HD plots were designed to be multiples of the control N fertilization levels. Preplant fertilizer was added such that the sum of residual soil N plus the added fertilizer would total to 45, 90, or 135 kg·ha-1 of N for the standard, intermediate, and highest rates, respectively. Topdressing rates were 22, 44, or 66 kg·ha-1 of N for standard, intermediate, and highest, respectively. Topdressing was timed to follow a mechanical harvest of the HD plots. Since there was only one mechanical harvest in the two 1995 studies, topdress N treatments did not affect yields from mechanical harvest in that year. Nitrogen treatments had few effects on fruit yield per hectare of HD okra, even when stem N concentrations equaled or exceeded those of control plants. The highest N rate tended to delay fruit production. Increasing N rates did not affect the marketable fruit yield obtained by mechanical harvest of HD plants expressed as a percentage of the total cumulative marketable fruit yield from control plants. Physiological factors appear to be limiting the potential for densely planted okra in a destructive mechanical harvest system rather than horticultural factors such as N nutrition.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3