Reducing Substrate Moisture Content during Greenhouse Production of Poinsettia Improves Postproduction Quality and Economic Value

Author:

Guo Yanjun,Starman Terri,Hall Charles

Abstract

The objective was to determine the effect of substrate moisture content (SMC) during poinsettia (Euphorbia pulcherrima) greenhouse production on plant quality, postproduction longevity, and economic value. Two experiments were conducted, one in 2016 with ‘Freedom Red’ and the other in 2017 with ‘Christmas Eve Red’. Treatments included two SMC levels (20% or 40%) applied in four timing of application combinations. Total production (TP) time was 14 (2016) or 12 (2017) weeks in which vegetative production (VP) occurred from week 33 (2016) or 35 (2017) to week 39 and reproductive production (RP) continued from week 40 to 47. The four timing of application treatments were 40/40 = TP at 40% SMC; 20/40 = VP at 20% + RP at 40%; 40/20 = VP at 40% + RP at 20%; 20/20 = TP at 20% SMC. After simulated shipping in the dark, plants were evaluated in a simulated retail environment with two packaging treatments: no sleeve covering or plastic perforated plant sleeves covering container and plant. At the end of greenhouse production, plants grown in 20% SMC during RP (20/20 and 40/20) had shorter bract internode length, stem length, and smaller growth index (GI), decreased shoot and root dry weight (DW), and bract and leaf surface area compared with those in 40% SMC during RP (40/40 and 20/40). Photosynthetic rate was higher when plants were watered at 40% SMC regardless of production stage compared with those in 20% SMC. Leaf thickness, petiole thickness, total bract and leaf number were unaffected by SMC treatments. Plants in 20% SMC during RP (20/20 or 40/20) had earlier bract coloring despite days to anthesis being the same for all SMC treatments. Compared with 40/40, 40/20, and 20/20 could save 44.2% or 43.6%, respectively, irrigation and fertilizer usage, and 39.1% and 47.8%, respectively, labor time. During postharvest, ethylene concentration was unaffected by packaging method. Sleeved plants, regardless of SMC treatment, received lower light intensity in the middle of the plant canopy, causing plants to have lower total leaf number due to abscission and SPAD reading at the end of postproduction. The 40/40 treatment abscised more bracts during five weeks (in 2016) of postproduction and with no sleeve had higher number of bracts with bract edge burn (BEB). In summary, reducing SMC to 20% during TP or RP reduced water usage during production and produced more compact plants with increased postproduction quality.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3