Insecticidal Effects of Different Application Techniques for Silica Dusts in Plant Protection on Phaedon cochleariae Fab. and Pieris brassicae L.

Author:

Mucha-Pelzer Tanja,Bauer Reinhard,Scobel Ekkehard,Ulrichs Christian

Abstract

Since the 1900s, diatomaceous earth (DE) has been used as an alternative to chemical insecticides in stored product protection. New silica and DE formulations offer expanded possibilities for use in horticultural crops. However, many crop pests are found on the leaf underside and this is especially challenging when using silica because the substance must have direct contact with the insect to be effective. We tested three application techniques with three formulations of silica to evaluate their efficacy against different developmental stages of mustard leaf beetle (Phaedon cochleariae Fab.) and the cabbage worm of the large white butterfly (Pieris brassicae L.) on the host plant species pak choi (Brassica rapa ssp. chinensis L.). Formulations were applied manually with a powder blower, with an electrostatic spray gun, and in a closed chamber also working with electrostatic forces. The silica formulations used in the biotests were Fossil Shield 90.0s®, AE R974®, and a formulation developed at Humboldt University Berlin called AL-06-109. All formulations contained at least 60% silicon dioxide. Significant differences in efficacy were detected with different application methods and/or silica formulations. AL-06-109 electrostatic cabin-applied was the most effective combination. All formulations, if applied electrostatically, resulted in good coverage and in high plant protection against insect pests. Dusts applied manually were unevenly distributed and easily removed by wind from leaf surfaces. Electrostatic application with a spray gun resulted in even particle distribution on plants, but overspray was high. To accomplish even coverage without wasting so much active material, an enclosed mobile chamber with an electrostatic spray system and an attached exhaust system was developed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3