Hypobaric Storage of Representative Root, Leaf, Fruit, and Flower Tissues: Comparisons to Storage at Atmospheric Pressure and Normoxia

Author:

Paskus Benjamin,Abeli Patrick,Beaudry Randolph

Abstract

Hypobaric or low-pressure storage (LPS) is a technology that has been reported to have significant potential to preserve fresh produce quality. However, excessive moisture loss has often been erroneously reported to limit the utility of LPS. We report on hypobaric (1.6 to 2.0 kPa) storage of representative bulky and leafy fruits and vegetables {strawberry (Fragaria ×ananassa Duchesne ex Rozier) fruit, carrot [Daucus carota subsp. sativus (Hoffm.) Arcang.] roots, spinach (Spinacia oleracea L.) leaves, and rose (Rosa ×hybrida ‘Attaché Pink’) flowers} using a laboratory-scale LPS and provide data on the regulation of humidity and temperature and describe effects on moisture loss and quality. The LPS achieved near saturation (>99.5%) of water without condensation on the chamber sidewalls. This required tight regulation of the chamber wall temperature (2.2 °C ± 0.15 °C) and careful control of the flux of air into the chamber. The rate of moisture loss was unaffected by the pressure of the storage atmosphere; however, it was affected by commodity, being lower for strawberry than for carrot or spinach, and averaging 0.08%, 0.40%, and 0.35% per day, respectively (average of normal and low pressure combined). Moisture loss of long-stemmed rose in LPS averaged 0.071% per day over an 8-week storage period. Although moisture loss was low, the LPS environment appeared to enhance water loss from deeper within plant tissues than storage at atmospheric pressure and, in roses, resulted in bent neck 2 or 3 days after removal from storage after 3 weeks. For this reason, LPS did not benefit storability of cut ‘Attaché Pink’ roses compared with high-humidity chambers maintained at atmospheric pressure.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3