Somaclonal Variation of Coreopsis Regenerated from Leaf Explants

Author:

Trader Brian W.,Gruszewski Hope A.,Scoggins Holly L.,Veilleux Richard E.

Abstract

Coreopsis species (tickseed) can be regenerated from leaf segments allowing the possibility to exploit somaclonal variation as a means to develop novel phenotypes. We used true leaf explants from in vitro seedlings of perennial C. grandiflora (A. Gray) Sherff `Domino' and `Sunray' grown on Murashige and Skoog (MS) basal medium. Two of ten seedlings of `Domino' regenerated freely and others were generally recalcitrant. From these two seedlings, designated E2 and H2, shoots were regenerated and acclimatized to the greenhouse. About 175 plants were established and vernalized from which somaclones were selected based on distinct differences in flower orientation and appearance. The selected somaclones were propagated by division and transplanted to the field in August 2001 in a randomized complete block design with three-plant plots and three replications to determine whether novel characteristics persisted through an additional propagation cycle. In the field, plant height, leaf dimension, flowering, and flower dimensions were scored in June and July 2003. Differences were found between somaclones and similarly propagated E2 and H2 for desirable (more petals per flower, greater flowering, shorter plants), undesirable (less flowering, smaller flowers), and neutral (narrower leaves, taller plants) traits. Open-pollinated (OP) seed was collected and germinated and the seedlings from somaclones that differed significantly from E2 and H2 were evaluated. These maternally selected seedlings were overwintered then planted in the field in May 2004. Most traits that differentiated somaclones from E2 and H2 did not persist in the OP seedling population; however variation that was likely introduced through outcrossing resulted in desirable phenotypes with potential for new cultivar development.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3