Affiliation:
1. Department of Plants, Soils, and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322, USA
2. Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
Abstract
Available water for urban landscape irrigation is likely to become more limited because of inadequate precipitation and the ever-increasing water demand of a growing population. Recent droughts in the western United States have also increased the demand for low-water-use landscapes in urban areas. Penstemon species (beardtongues) are ornamental perennials commonly grown in low-water-use landscapes, but their drought tolerance has not been widely investigated. The objectives of this study were to determine the effects of water availability on the morphology, physiology, and canopy temperature of Penstemon barbatus (Cav.) Roth ‘Novapenblu’ (Rock Candy Blue® penstemon), P. digitalis Nutt. ex Sims ‘TNPENDB’ (Dakota™ Burgundy beardtongue), P. ×mexicali Mitch. ‘P007S’ (Pikes Peak Purple® penstemon), and P. strictus Benth. (Rocky Mountain penstemon). Twenty-four plants of each penstemon species were randomly assigned to blocks in an automated irrigation system, and the substrate volumetric water content was maintained at 0.15 or 0.35 m3⋅m−3 for 50 days. The decreased substrate volumetric water content resulted in a decreased aesthetic appearance of the four penstemon species because of the increased numbers of visibly wilted leaves and chlorosis. Plant growth index [(height + (width 1 + width 2)/2)/2], shoot number, shoot dry weight, leaf size, and total leaf area also decreased as the substrate volumetric water content decreased, but the root-to-shoot ratio and leaf thickness increased. Photosynthesis decreased, stomatal resistance increased, and warmer canopy temperatures were observed when plants were dehydrated. Additionally, as substrate volumetric water content decreased, the leaf reflectance of P. barbatus and P. strictus increased. Penstemon digitalis, which had the highest canopy–air temperature difference, was sensitive to drought stress, exhibiting a large proportion of visibly wilted leaves. Penstemon ×mexicali, which had the lowest root-to-shoot ratio, had the lowest shoot water content of the species studied and more than 65% of leaves visibly wilted when experiencing drought stress. Penstemon barbatus and P. strictus, native to arid regions, exhibited lower canopy–air temperature differences and better aesthetic quality than the other two species. Under the conditions of this study, Penstemon barbatus and P. strictus exhibited better drought tolerance than P. digitalis and P. ×mexicali.
Publisher
American Society for Horticultural Science
Reference51 articles.
1. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources;Ahluwalia,2021
2. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses;Álvarez,2009
3. Drought responses among seven southwestern landscape tree taxa;Balok,2002
4. Hardening of oleander seedlings by deficit irrigation and low air humidity;Bañon,2006
5. Genotypic variability in photosynthesis, water use, and light absorption among red and Freeman maple cultivars in response to drought stress;Bauerle,2003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献