Marker-assisted Pyramiding of Charcoal Rot Resistance Loci in Strawberry

Author:

Alam Elissar1,Lee Seonghee1,Peres Natalia A.2,Whitaker Vance M.1

Affiliation:

1. Plant Breeding Graduate Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA

2. Plant Pathology Department, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, USA

Abstract

Macrophomina phaseolina, the causal agent of charcoal rot, is one of the most destructive soil-borne pathogens that affect the global strawberry industry. Resistant cultivars are critical for ensuring the profitability of strawberry production without the protection historically provided by methyl bromide. Previously, three loci, namely, FaRMp1, FaRMp2, and FaRMp3, associated with quantitative resistance to Macrophomina phaseolina have been identified and validated across diverse populations and environments. Among those, the locus with the largest effect, FaRMp3, was initially detected in crosses with an exotic Fragaria ×ananassa selection. We introgressed the favorable FaRMp3 allele into elite germplasm in the University of Florida strawberry breeding program already segregating for FaRMp1 and FaRMp2 and confirmed its phenotypic effects across various genetic backgrounds. Subsequently, we developed a high-throughput genotyping assay to facilitate the transfer and selection of FaRMp3 in breeding populations via marker-assisted selection. Given that three quantitative trait loci (QTL) contribute to partial resistance to Macrophomina phaseolina, stacking them within a single genotype presents a potential strategy for enhancing resistance. We screened 564 individuals that segregate for favorable alleles at all three QTL to assess their effects singly and in combination across multiple genetic backgrounds and production seasons. Inoculated field trials revealed that the three QTL cumulatively enhanced resistance levels, and that two-way QTL combinations including FaRMp3 provide increased protection against the pathogen. Pyramiding all three loci achieved the strongest resistance and could provide substantial economic value to the strawberry industry.

Publisher

American Society for Horticultural Science

Reference45 articles.

1. First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain;Avilés M,2008

2. Sources of inoculum and survival of Macrophomina phaseolina in Florida strawberry fields;Baggio JS,2019

3. cultivar selection is an effective and economic strategy for managing charcoal rot of strawberry in Florida;Baggio JS,2021

4. Molecular markers and selection for complex traits in plants: Learning from the last 20 years;Bernardo R,2008

5. Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum);Bovill WD,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3