Predicting Need for Phosphorus Fertilizer by Soil Testing During Seeding of Cool Season Grasses

Author:

Hamel Stephanie C.,Heckman Joseph R.

Abstract

Recent changes in soil testing methodology, the important role of P fertilization in early establishment and soil coverage, and new restrictions on P applications to turf suggest a need for soil test calibration research on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb), and perennial ryegrass (Lolium perenne L.). Greenhouse and field studies were conducted for 42 days to examine the relationship between soil test P levels and P needs for rapid grass establishment using 23 NJ soils with a Mehlich-3 extractable P ranging from 6 to 1238 mg·kg–1. Soil tests (Mehlich-1, Mehlich-3, and Bray-1) for extractable P were performed by inductively coupled plasma–atomic emission spectroscopy (ICP). Mehlich-3 extractable P and Al were measured to evaluate the ratio of P to Al as a predictor of need for P fertilizer. Kentucky bluegrass establishment was more sensitive to low soil P availability than tall fescue or perennial ryegrass. Soil test extractants Mehlich-1, Bray-1, or Mehlich-3 were each effective predictors of need for P fertilization. The ratio of P to Al (Mehlich-3 P/Al %) was a better predictor of tall fescue and perennial ryegrass establishment response to P fertilization than soil test P alone. The Mehlich-1, Bray-1, and Mehlich-3 soil test P critical levels for clipping yield response were in the range of 170 to 280 mg·kg–1, depending on the soil test extractant, for tall fescue and perennial ryegrass. The Mehlich-3 P/Al (%) critical level was 42% for tall fescue and 33% for perennial ryegrass. Soil test critical levels, based on estimates from clipping yield data, could not be determined for Kentucky bluegrass using the soils in this study. Soil testing for P has the potential to aid in protection of water quality by helping to identify sites where P fertilization can accelerate grass establishment and thereby prevent soil erosion, and by identifying sites that do not need P fertilization, thereby preventing further P enrichment of soil and runoff. Because different grass species have varying critical P levels for establishment, both soil test P and the species should be incorporated into the decision-making process regarding P fertilization.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3