Spatial and Temporal Factors in Weed Interference with Newly Planted Apple Trees

Author:

Merwin Ian A,Ray John A.

Abstract

Temporal and spatial combinations of tree-row weed suppression treatments were evaluated during 5 years in a New York apple (Malus domestica Borkh. cv. Imperial Gala on Malling 26 rootstocks) orchard planted in Apr. 1991, and provided with trickle irrigation. Twenty-eight factorial treatment combinations [0, 2, 4, and 6 m2 weed-free areas (WFAs); and May, June, July, August, May + June, June + July, May + June + July, and June + July + August weed-free times (WFTs)] were maintained from 1991 to 1995 by postemergence paraquat herbicide applications in tree-row strips. Trunk cross-sectional area (TCA) growth and yield were monitored annually, and few differences were observed as WFA increased from 2 to 4 to 6 m2 per tree. However, WFT substantially influenced TCA, fruit production, and yield efficiency. Early summer WFTs increased TCA during the first two growing seasons, compared with late summer treatments. When trees came into production in 1993-94, yields increased as the duration of WFT increased, but where similar periods of WFT had been established later during the growing season, annual yield, cumulative yield efficiency, and the ratio of crop value to weed-control costs were all reduced. Groundcover species distribution was evaluated each year in September, and graminaceous weeds were more prevalent in the early and midsummer WFTs, while herbaceous broadleaf weeds dominated in the August treatments. A quadratic model regressing cumulative yield efficiency on WFTs grouped into 30-, 60-, and 90-day categories showed that efficiency peaked between 60 and 90 days of WFT. It appeared that timing of weed suppression may be as important as the area of suppression beneath trees in comparable apple orchards, that early summer weed control was especially important for newly planted trees, and that drip irrigation allowed reductions in the area and amount of tree-row herbicide applications, without significant losses in apple tree growth or crop value.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3