Nonchemical, Cultural Management Strategies to Suppress Phytophthora Root Rot in Northern Highbush Blueberry

Author:

Yeo John R.,Weiland Jerry E.,Sullivan Dan M.,Bryla David R.

Abstract

Phytophthora cinnamomi Rands causes root rot of northern highbush blueberry (Vaccinium corymbosum L.), which decreases plant growth, yield, and profitability for growers. Fungicides are available to suppress the disease, but are prone to development of resistance in target pathogens and cannot be used in certified organic production systems. Alternative, nonchemical, cultural management strategies were evaluated to reduce phytophthora root rot in a field infested with P. cinnamomi. The field was planted with ‘Draper’ blueberry, which is highly susceptible to the pathogen. The soil was either amended with gypsum or not before planting, and the plants were irrigated using narrow (adjacent to plant crown) or widely spaced (20 cm on either side of the plant crown) drip lines and mulched with douglas fir sawdust or black, woven geotextile fabric (weed mat). A fungicide control treatment was also included in the study and consisted of applying two conventional fungicides, mefenoxam and fosetyl-Al, to plants irrigated with narrow drip lines and mulched with sawdust. Initially, root infection by P. cinnamomi was lower with the combination of gypsum, wide drip lines, and sawdust mulch than with any other treatment, except the fungicide control. The soil under weed mat accumulated more heat units than under sawdust and resulted in faster hyphal growth by the pathogen. However, plant growth was similar in both mulch types. The effects of drip line placement and gypsum, on the other hand, were interactive, and plants grown with a combination of wide drip lines and gypsum produced the greatest amount of biomass among the cultural treatments. Narrow drip lines negated the disease-suppressive effects of gypsum by moving zoospore-inhibiting Ca2+ away from the plant root zone, and also resulted in wetter soil near the crown of the plants, which likely promoted zoospore discharge and root infection. However, wide drip lines resulted in N deficiency symptoms during the first year after planting and, therefore, resulted in less plant growth than the fungicide control. Thus, if N is managed properly, this study suggests that concerted use of gypsum and wide drip lines can help suppress phytophthora root rot in northern highbush blueberry and increase production in field soils where the pathogen is present.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3