Photoperiod, Irradiance, and Temperature Affect Echinopsis ‘Rose Quartz’ Flowering

Author:

Erwin John,O’Connell Rene,Altman Ken

Abstract

Photoperiod, irradiance, cool temperature (5 °C), and benzyladenine (BA) application effects on Echinopsis ‘Rose Quartz’ flowering were examined. Plants were placed in a 5 °C greenhouse under natural daylight (DL) for 0, 4, 8, or 12 weeks, then moved to a 22/18 °C (day/night temperature) greenhouse under short days (SD, 8-hour DL) plus 0, 25, 45, or 75 μmol·m−2·s−1 supplemental lighting (0800–1600 hr; 8-hour photoperiod), long days (LD) delivered with DL plus night-interruption lighting (NI) (2200–0200 hr), or DL plus 25, 45, or 75 μmol·m−2·s−1 supplemental lighting (0800–0200 hr) for 6 weeks. Plants were then grown under DL only. Percent flowering plants increased as irradiance increased from 0–25 to +75 μmol·m−2·s−1 on uncooled plants, from 0% to 100% as 5 °C exposure increased from 0 to 8 weeks under subsequent SD and from 25% to 100% as 5 °C exposure increased from 0 to 4 weeks under subsequent LD. As 5 °C exposure duration increased from 0 to 12 weeks (SD-grown) and from 0 to 8 weeks (LD-grown), flower number increased from 0 to 11 and from 5 to 21 flowers per plant across irradiance treatments, respectively. Total production time ranged from 123 to 147 days on plants cooled from 8 to 12 weeks (SD-grown) and from 52 to 94 days on plants cooled for 0–4 weeks to 119–153 days on plants cooled for 8–12 weeks (LD-grown). Flower life varied from 1 to 3 days. BA spray application (10–40 mg·L−1) once or twice after a 12-week 5 °C exposure reduced flower number. Flower development was not photoperiodic. High flower number (17–21 flowers/plant) and short production time (including cooling time, 120–122 days) occurred when plants were grown at 5 °C for 8 weeks, then grown under LD + 45–75 μmol·m−2·s−1 for 6 weeks (16 hours; 10.9–12.8 mol·m−2·d−1) at a 22/18 °C day/night temperature. Taken together, Echinopsis ‘Rose Quartz’ exhibited a facultative cool temperature and facultative LD requirement for flowering.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3