Weed Suppression in Pumpkin by Mulches Composed of Organic Municipal Waste Materials

Author:

Splawski Caitlin E.,Regnier Emilie E.,Harrison S. Kent,Bennett Mark A.,Metzger James D.

Abstract

Field studies were conducted in 2011 and 2012 to compare mulch treatments of shredded newspaper, a combination of shredded newspaper plus turfgrass clippings (NP + grass), hardwood bark chips, black polyethylene plastic, and bare soil on weeds, insects, soil moisture, and soil temperature in pumpkins. Newspaper mulch or black plastic reduced total weed biomass ≥90%, and woodchip or NP + grass mulch each reduced total weed biomass 78% compared with bare soil under high rainfall conditions in 2011. In 2012, under low rainfall, all mulches reduced weed biomass 97% or more compared with bare soil. In both years, all mulches resulted in higher squash bug infestations than bare soil. The woodchip, newspaper, and NP + grass mulches retained higher soil moistures than bare soil or black plastic over the course of each growing season, and the woodchip and NP + grass mulches caused greatest fluctuations in soil temperature. Pumpkin yields were abnormally low in 2011 and did not differ among treatments. In 2012, all mulches produced greater total marketable pumpkin fruit weights compared with bare soil, but only black plastic, newspaper, and NP + grass mulches resulted in greater total numbers of marketable pumpkins. Overall results indicate that shredded newspaper or NP + grass mulches may be useful for organic and/or small-scale urban crop producers as sustainable alternatives to black plastic mulch; however, their weed suppression efficacy may require higher application rates with increasing moisture conditions, and they may require greater squash bug control measures than under bare soil conditions.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3