Determining the Optimum Night Length for Flower Development in a Modern Poinsettia Cultivar

Author:

Alden Michael1,Faust James E.1

Affiliation:

1. Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634

Abstract

The effect of night length (NL) on the flower development of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) ‘Prestige Red’ was evaluated. Flower initiation occurred by subjecting plants to a 14-hour NL for 10 or 17 days, termed short-day (SD) treatments, and then transferring the plants to each of four NL treatments (11, 12, 13, or 14 hours) to observe the effects of NL on flower development. The plants grown continuously with the 14-h NL treatment were the control group. The timing of first color, visible bud, and anthesis were recorded during flower development, and bract and leaf data were collected at anthesis. Leaf number was unaffected by the SD or NL treatments, suggesting that flower initiation occurred during the 10-day SD treatment before the start of NL treatments; thus, the NL treatments only affected flower development. The timing of first color and visible bud were significantly delayed with the 10-day SD × 11-hour NL treatment relative to the 14-hour NL control; however, first color and visible bud were not delayed with the 17-day SD × 11-hour NL treatment. The 11-hour NL treatment resulted in fewer plants reaching anthesis, and these plants had fewer stem bracts and less bract color development compared with the 12-hour, 13-hour, and 14-hour NL treatments. Therefore, an 11-hour NL is suboptimal for flower development; nonetheless, significant development did occur. The 12-hour NL resulted in less color development than the 13-hour and 14-hour NL treatments in the lowest stem bract positions, but the plants had a commercially acceptable appearance. These results demonstrate that minimal differences in flower development occur with NL ≥12 hours, but that optimal development required NL ≥13 hours.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3