Cultivation and Irrigation of Fernleaf Biscuitroot (Lomatium dissectum) for Seed Production

Author:

Shock Myrtle P.,Shock Clinton C.,Feibert Erik B.G.,Shaw Nancy L.,Saunders Lamont D.,Sampangi Ram K.

Abstract

Native grass, forb, and shrub seed is needed to restore rangelands of the U.S. Intermountain West. Fernleaf biscuitroot [Lomatium dissectum (Nutt.) Mathias & Constance] is a desirable component of rangelands. Commercial seed production is necessary to provide the quantity and quality of seed needed for rangeland restoration and reclamation efforts. Fernleaf biscuitroot has been used for hundreds if not thousands of years in the western United States as a source of food and medicine. Knowledge about fernleaf biscuitroot is confined to ethnobotanical reports, evaluation of some of its chemical constituents, and its role in rangelands. Products derived from fernleaf biscuitroot are sourced from wild plant populations. Little is known about fernleaf biscuitroot cultivation or its seed production. Variations in spring rainfall and soil moisture result in highly unpredictable water stress at flowering, seed set, and seed development of fernleaf biscuitroot. Water stress is known to compromise seed yield and quality for other seed crops. Irrigation trials were conducted at the Oregon State University Malheur Experiment Station at Ontario, OR, a location within the natural environmental range of fernleaf biscuitroot. It was anticipated that supplemental irrigation would be required to produce a seed crop in all years. Fernleaf biscuitroot was established through mechanical planting and cultivation on 26 Oct. 2005 in a randomized complete block design with four replicates; plot size was 9.1 m × 3.04 m wide. Irrigation treatments were 0 mm, 100 mm, and 200 mm/year applied in four equal treatments 2 weeks apart, timed to begin with flowering and continue through seed formation. First flowering occurred in the third year after planting. Seed production increased from the fourth through the sixth year. Optimal irrigation for seed production was calculated as 140 mm/year.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3