Effect of Radiation Quality and Relative Humidity on Intumescence Injury and Growth of Tomato Seedlings

Author:

Retana-Cordero Marlon1,Humphrey Samson1,Gómez Celina2

Affiliation:

1. Environmental Horticulture Department, University of Florida, Institute of Food and Agricultural Sciences (IFAS), 1549 Fifield Hall, Gainesville, FL 32611-0670

2. Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010

Abstract

Intumescence is a physiological disorder that affects some tomato (Solanum lycopersicum) cultivars grown in environments lacking ultraviolet radiation. Both far-red (FR) radiation and blue light have been shown to help mitigate this disorder. Thus, the objectives of this study were to characterize and compare intumescence injury and growth of various tomato cultivars propagated under different radiation qualities (Expt. 1) and to evaluate plant responses to the interactive effect of radiation quality and relative humidity (RH) (Expt. 2). Seedlings of six cultivars in Expt. 1 were grown under broad band white light (W), W and blue with (WBFR) or without (WB) FR radiation, and blue and red light with FR radiation (BRFR). Seedlings of four cultivars in Expt. 2 were grown under W or WBFR and a low (≈50%) or high (≈95%) RH. In both experiments, seedlings were grown under a daily light integral of ≈13 mol·m‒2·d‒1 (200 ± 4 μmol·m‒2·s‒1 for 18 h·d−1). FR radiation was provided using 20 ± 2 μmol·m−2·s−1 delivered throughout the entire photoperiod or at the end-of-day (EOD) in Expts. 1 or 2, respectively. Intumescence was generally suppressed when seedlings in Expt. 1 were grown under BRFR and WBFR, which also corresponded with the general response to stomatal conductance (gs). In contrast, seedlings grown under W had the highest incidence of intumescence, ranging from 23% to 69% across cultivars. The high blue photon flux (PF) ratio in WB was not effective at suppressing intumescence injury without FR radiation, although incidence and severity were lower compared with W. In Expt. 2, intumescence incidence was generally lower in seedlings grown under WBFR, and RH had small effects on intumescence. In both experiments, younger leaves were relatively less affected by intumescence, suggesting that a developmental factor is associated with the disorder. As expected, providing FR radiation resulted in a general increase in stem height across cultivars and in both experiments. The high RH provided in Expt. 2 also resulted in an increase in stem height. However, seedlings under low RH produced larger leaves, lower specific leaf area, and more shoot dry mass than those under high RH. Overall, our findings show that applying FR radiation helps suppress intumescence, but strategies are needed to minimize issues with excessive stem elongation.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference72 articles.

1. Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum;Avila,,2019

2. Relationships between extractable chlorophyll and SPAD values in muskmelon leaves;Azia,,2001

3. Gibberellin-induced elongation and osmoregulation in internodes of floating rice;Azuma,,1997

4. Optimal LED far-red light intensity in end-of-day promoting tomato growth and development in greenhouse. Trans. of the Chinese Soc. of Ag;Cao,,2016

5. Adventitious rooting of Chrysanthemum is stimulated by a low red: Far-red ratio;Christiaens,,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3