Screening Thermal Shock as an Apple Blossom Thinning Method. II. Pollen Tube Growth and Spur Leaf Injury in Response to Temperature and Duration of Thermal Shock

Author:

Kon Thomas M.,Schupp Melanie A.,Winzeler Hans E.,Schupp James R.

Abstract

Blossom thinning can confer significant benefits to apple growers, including increased fruit size and annual bearing. However, current blossom thinning practices can damage spur leaves and/or fruit. We evaluated the use of short duration forced heated air treatments [thermal shock (TS)] as a blossom thinning strategy for ‘York Imperial’. Using a variable-temperature heat gun, TS treatments were applied to solitary blossoms 24 hours after pollination. Effects of output temperature (five levels) and treatment duration (four levels) were evaluated using a completely randomized design with a factorial treatment structure. Short duration treatments (0.5 and 1.0 seconds) were ineffective for arresting pollen tube growth in vivo. TS temperature required to inhibit stylar pollen tube growth was inconsistent across years. In 2014, TS temperatures ≥56 °C inhibited pollen tubes from reaching the style base at 2.0 and 4.0 second durations. However, in 2015, TS temperatures ≥81 °C at 4.0 seconds prevented pollen tubes from reaching the style base. Inconsistent effects of TS across years were attributed to treatments being applied too late due to optimal conditions for pollen tube growth during the intervening 24-hour period after pollination. Excessive injury to spur leaf tissue was observed at temperatures higher than 84 °C and 70 °C (2.0 and 4.0 seconds, respectively). Pollen tube growth was reduced or arrested at temperature and duration combinations that caused minimal visible injury to spur leaves. Identifying and exploiting structural differences between apple blossoms and vegetative spur leaves may provide insight for the future development of TS or other attempts at developing selective thinning technologies.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3