Citrulline and Arginine Are Moderately Heritable in Two Red-fleshed Watermelon Populations

Author:

Hartman Jordan L.,Perkins-Veazie Penelope,Wehner Todd C.

Abstract

Watermelon fruit [Citrullus lanatus (Thumb) Matsum & Nakai] is a natural source of phytonutrients, including lycopene, citrulline, and arginine. Two segregating, highly outcrossed North Carolina watermelon populations, NC High Yield (NCHYW) and NC Small Fruit (NCSFW), were evaluated for these traits and for indicators of ripeness (pH and soluble solids content). Parents tested in 2015 (NSF = 300, NHY = 300) were sampled for the above and offspring were tested in 2016 if the sampled fruit of the parents were of qualifying ripeness [soluble solids concentration (SSC) ≥8, pH 5.5–6.5], resulting in 251 families (NSF = 72, NHY = 175). Narrow-sense heritability was estimated in each of the populations using the methods of 1) parent-offspring regression and 2) variance of half-sibling family means. Heritability for citrulline in NCHYW was moderate in both parent-offspring and half-sibling estimations (38% and 43%), as was arginine (40% and 44%) and lycopene (46% and 47%, respectively). Estimates for these traits in NCSFW were considerably different, with parent-offspring and half-sibling estimations for citrulline (65% and 22%), arginine (9% and 20%), and lycopene (44% and 68%). In NCHYW, moderate phenotypic correlations were found between SSC and citrulline (0.40), arginine (0.40), their combination (0.45), and lycopene (0.30) all of which were significant, except lycopene. Lycopene was significantly and weakly correlated to citrulline (0.22), but was not correlated to arginine (0.06). Similar correlations were found in NCSFW; SSC was significantly correlated to citrulline (0.24), arginine (0.18), and their combination (0.23), whereas lycopene was slightly correlated to citrulline (0.15) and not significantly correlated to arginine. Based on these heritabilities and phenotypic correlations, tandem selection for high lycopene and citrulline content may be accomplished efficiently using progeny rows with minimal replication using the NCSFW population, whereas replication with multiple years, rows, and locations may be necessary for creating stable lines using the NCHYW population.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3