Nitrogen Fertilizer Rate, Timing, and Application Method Affects Growth of Sweet Viburnum and Nitrogen Leaching from Simulated Planting Beds

Author:

Shober Amy L.,Koeser Andrew K.,McLean Drew C.,Hasing Gitta,Moore Kimberly K.

Abstract

Several Florida cities and counties ban fertilization during the summer rainy season (fertilizer blackout). Little research is available to support or contradict the underlying justifications for these policies. We used large-volume lysimeters to address the impacts of several fertilization regimes on plant growth and aesthetics of sweet viburnum (Viburnum odoratissimum Ker Gawl.) and nitrogen (N) leaching from landscape beds during shrub establishment and maintenance. Three levels of N fertilization (98, 195, and 293 kg·ha−1), two levels of application method (per plant and broadcast), two levels of fertilization timing (regular and blackout), and an unfertilized control (0 kg·ha−1 N) were applied to lysimeters in a completely randomized design with three replicates (3 × 2 × 2 factorial plus untreated control). Increasing fertilization rate increased plant growth and improved plant quality, but also increased N leaching from lysimeters. Including a summer fertilization blackout period reduced nitrate + nitrite (NO3 + NO2-N) loading from lysimeters during sweet viburnum establishment [0 to 28 weeks after planting (WAP)] compared with year-round fertilization at the same total N rate without adversely impacting plant growth or aesthetics. However, NO3 + NO2-N loads from lysimeters were higher when fertilizers were applied on the summer blackout application schedule during the shrub maintenance period. Targeted (per plant) fertilization beneath the dripline of sweet viburnum at an annual N rate of 195 kg·ha−1 can maintain plant health while limiting N leaching losses on a year-round or blackout fertilization schedule.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3