Abstract
Leaf nitrogen (N) and contact optical sensor sampling methods vary in the literature. Thus, the objective of this study was to determine the best sampling procedure for correlating leaf N concentration to contact optical sensor readings. To investigate this, fertilizer rates of 0, 5, 10, or 15 g of 16N–9P–12K were applied as a topdress application on ornamental cabbage (Brassica oleracea L.) ‘Tokyo Red’. Soil plant analysis development (SPAD) and atLEAF chlorophyll meters were used every week for 5 weeks starting 30 days after planting. For each pot, SPAD and atLEAF measurements were taken from a single mature leaf from the middle to upper level of the plant at the leaf tip, blade, or base of the leaf not including the midrib. Weekly leaf foliar analysis consisted of collecting either fully developed leaves from a single plant, five plants, or 10 plants per, using only the tip, blade, or base of three leaves for total leaf N concentration per treatment. A significant position affect was seen in both SPAD and atLEAF sensors. For SPAD, sensor readings taken from the tip and blade of a leaf were not significantly different from each other but were significantly different from the base of the leaf. All three positions for atLEAF were significantly different from each other. This indicates that sensor sampling location within a leaf will affect readings. A significant difference was observed among leaf sampling methods. Taking leaf samples from the tip and base had the highest leaf N concentrations and were not significantly different from each other but were significantly different from all other sampling methods, which were not significantly different from each other. Significant correlations were seen among all combinations of sensor positions and leaf N sampling methods except SPAD readings taken from the tip and leaf sampling from a single plant. Highest correlations (r = 0.7 to 0.8) were seen when SPAD readings were taken from the base of the leaf irrespective of leaf sampling method. Based on this experiment, either sensor could be used for correlating leaf N; however, growers should consistently collect sensor readings from the same location on a leaf to achieve consistent values and correlations.
Publisher
American Society for Horticultural Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献