Rolled Winter Rye and Hairy Vetch Cover Crops Lower Weed Density but Reduce Vegetable Yields in No-tillage Organic Production

Author:

Leavitt Matthew J.,Sheaffer Craig C.,Wyse Donald L.,Allan Deborah L.

Abstract

Winter annual cover crops, winter rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth), can reduce weed density and build soil quality in organic production systems. There is interest in integrating cover crops and reduced tillage with organic vegetable production, but few studies have been conducted in regions with short growing seasons and cool soils such as the upper Midwest. We evaluated no-tillage production of tomato (Solanum lycopersicum L.), zucchini (Cucurbita pepo L.), and bell pepper (Capsicum annuum L.) planted into winter rye, hairy vetch, and a winter rye/hairy vetch (WR/HV) mixture that were mechanically suppressed with a roller–crimper at two locations in Minnesota. Average marketable yields of tomato, zucchini, and bell pepper in the rolled cover crops were reduced 89%, 77%, and 92% in 2008 and 65%, 41%, and 79% in 2009, respectively, compared with a no-cover control. Winter rye and the WR/HV mixture reduced average annual weed density at St. Paul by 96% for 8 to 10 weeks after rolling (WAR) and hairy vetch mulch reduced weeds 80% for 2 to 8 WAR, whereas at Lamberton, there was no consistent effect of cover treatments on weed populations. Winter rye and the WR/HV mixture had higher average residue biomass (5.3 and 5.7 Mg·ha−1, respectively) than hairy vetch (3.0 Mg·ha−1) throughout the season. Soil growing degree-days (SGDD) were lower in cover crop treatments compared with the no-cover control, which could have delayed early vegetable growth and contributed to reduced yields. All cover crop mulches were associated with low levels of soil nitrogen (N) (less than 10 mg·kg−1 N) in the upper 15 cm. Rolled winter annual cover crops show promise for controlling annual weeds in organic no-tillage systems, but additional research is needed on methods to increase vegetable crop yields in rolled cover crops.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3