Physiological Responses in C3 and C4 Turfgrasses under Soil Water Deficit

Author:

Culpepper Travis,Young Joseph,Montague David T.,Sullivan Dana,Wherley Benjamin

Abstract

Lawns must be managed increasingly under less frequent or deficit irrigation. Deficit irrigation can reduce gas exchange, carbon assimilation, and physiological function in both warm- (C4) and cool- (C3) season turfgrasses, yet limited research has compared the physiological response to increasing levels of soil water deficit. The objectives of this greenhouse study were to compare three commonly used transition-zone turfgrasses—bermudagrass [Cynodon dactylon (L.) Pers.] (C4), buffalograss [Buchloe dactyloides (Nutt.) Engelm.] (C4), and tall fescue (Festuca arundinacea Schreb.) (C3)—and their ability to maintain quality and physiological function under water deficit stress. Visual turf quality, normalized difference vegetation index (NDVI), reflective canopy temperature, and gross photosynthesis were evaluated initially near field capacity (FC), and subsequent soil water deficit [48% (moderate) and 33% (severe) of plant-available water] conditions. Bermudagrass and tall fescue had similar quality ratings near FC, although the photosynthetic rate was greater for bermudagrass. Compared with other turfgrasses, bermudagrass maintained greater turf quality, NDVI, and photosynthetic rates further into water deficit stress. Tall fescue quality and photosynthetic rates declined most rapidly in both experiments as a result of the combined heat and drought stress. Buffalograss used less water compared with other species, and maintained consistent turf quality, NDVI, and photosynthetic rates under moderate and severe water deficit. These results support the notion that buffalograss and bermudagrass are better adapted than tall fescue at maintaining functional and ecosystem services with shallow soil depths in landscape situations under imposed summertime water restrictions.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3