Radiation Intensity and Quality Affect Indoor Acclimation of Blueberry Transplants

Author:

Gómez Celina1,Poudel Megha1,Yegros Matias1,Fisher Paul R.1

Affiliation:

1. Environmental Horticulture Department, University of Florida, Institute of Food and Agricultural Sciences (IFAS), 1549 Fifield Hall, Gainesville, FL 32611-0670

Abstract

The objectives were to characterize and compare shrinkage (i.e., transplant loss) and growth of tissue-cultured blueberry (Vaccinium corymbosum) transplants acclimated in greenhouses or indoors under 1) different photosynthetic photon flux densities (PPFDs) (Expt. 1); or 2) spectral changes over time using broad-spectrum white (W; 400 to 700 nm) light-emitting diodes (LEDs) without or with red or far-red (FR) radiation (Expt. 2). In Expt. 1, ‘Emerald’ and ‘Snowchaser’ transplants were acclimated for 8 weeks under PPFDs of 35, 70, 105, or 140 ± 5 µmol·m‒2·s‒1 provided by W LED fixtures for 20 h·d−1. In another treatment, PPFD was increased over time by moving transplants from treatment compartments providing 70 to 140 µmol·m‒2·s‒1 at the end of week 4. Transplants were also acclimated in either a research or a commercial greenhouse (RGH or CGH, respectively). Shrinkage was unaffected by PPFD, but all transplants acclimated indoors had lower shrinkage (≤4%) than those in the greenhouse (15% and 17% in RGH and CGH, respectively), and generally produced more shoot and root biomass, regardless of PPFD. Growth responses to increasing PPFD were linear in most cases, although treatment effects after finishing were generally not significant among PPFD treatments. In Expt. 2, ‘Emerald’ transplants were acclimated for 8 weeks under constant W, W + red (WR), or W + FR (WFR) radiation, all of which provided a PPFD of 70 ± 2 μmol·m−2·s−1 for 20 h·d−1. At the end of week 4, a group of transplants from WR and WFR were moved to treatment compartments with W (WRW or WFRW, respectively) or from W to a research greenhouse (WGH), where another group of transplants were also acclimated for 8 weeks (GH). Shrinkage of transplants acclimated indoors was also low in Expt. 2, ranging from 1% to 4%. In contrast, shrinkage of transplants acclimated in GH or under WGH was 37% or 14%, respectively. Growth of indoor-acclimated transplants was generally greater than that in GH or under WGH. Although growth responses were generally similar indoors, plants acclimated under WFR had a higher root dry mass (DM) and longer roots compared with GH and WGH.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3