Effects of Growing Substrate, Mode of Nutrient Supply, and Saffron Corm Size on Flowering, Growth, Photosynthetic Competence, and Cormlet Formation in Hydroponics

Author:

Dewir Yaser Hassan12,Alsadon Abdullah1,Ibrahim Abdullah1,El-Mahrouk Mohammed2

Affiliation:

1. 1Plant Production Department, P.O. Box 2460, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia

2. 2Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

Abstract

Hydroponics is a promising method for cultivation of saffron (Crocus sativus). In this study, saffron corms were sprouted using a gradual decrease in air temperature, and they were cultivated hydroponically in either perlite or volcanic rock for 24 weeks. A nutrient solution was supplied using either an ebb-and-flow system or continuous immersion. First blooming was observed 29 days after transplantation. Among flowering traits, only the stigma length was significantly influenced by the type of hydroponic system. Saffron plants displayed better growth parameters, a higher photosynthetic rate and stomatal conductance (gS), as well as daughter corm (cormlet) production under the continuous immersion system, in comparison with the ebb-and-flow system. Small corms (22–25 mm diameter) did not bloom, and the emergence of flowers increased with corm size. Plant growth and photosynthetic parameters, as well as cormlet production, significantly increased with corm size. We obtained the highest stigma yield [number of flowers (1.9), stigma length (39.4 mm), stigma fresh (42.8 mg), and dry weight (5.3 mg)] and cormlet yield [number of cormlets (5.7), average corm diameter (25 mm), and fresh weight (6.4 g)] using mother corms sized ≥32 mm diameter grown hydroponically in the volcanic rock–based continuous immersion system.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3