Phosphorus Sources and Management in Organic Production Systems

Author:

Nelson Nathan O.1,Janke Rhonda R.2

Affiliation:

1. 1Kansas State University, Department of Agronomy, 2708 Throckmorton Plant Sciences Center, Manhattan, KS 66506

2. 2Kansas State University, Department of Horticulture, Forestry, and Recreation Resources, 2021 Throckmorton Plant Sciences Center, Manhattan, KS 66506

Abstract

Organically produced fruit and vegetables are among the fastest growing agricultural markets. With greater demand for organically grown produce, more farmers are considering organic production options. Furthermore, there is an increasing interest in maintaining optimal production in an organic system, which involves appropriate nutrient management. The objectives of this review were to summarize the current state of our knowledge concerning effects of organic production systems on phosphorus (P) availability, describe P availability in common organically accepted P sources, and review best management practices that can reduce environmental risks associated with P management in organic systems. Organic production systems seek to improve soil organic matter and biological diversity, which may impact P cycling and P uptake by crops. Increases in organic matter will be accompanied by an increase in the organic P pool. Furthermore, management of cover crops and potentially enhanced arbuscular mycorrhizal fungi colonization from organic production practices can increase the availability of soil P pool (both organic and inorganic) by stimulating microbial activity and release of root exudates. This can help compensate for low soil P, but will not supersede the need to replace P removed by the harvested crop. Phosphorus fertilization in organic production systems entails balancing the P inputs with crop removal through selection and management of both nitrogen (N) and P inputs. Organic production systems that rely on manure or composts for meeting crop N demand will likely have a P surplus; therefore, P deficiencies will not be an issue. Systems using other N sources may have a P deficit, therefore requiring P supplementation for optimal plant growth. In such situations, maintenance P applications equal to crop removal should be made based on soil test recommendations. Primary organically approved P sources are phosphate rock (PR), manure, and compost. Phosphate rock is most effective at supplying P in soils with low pH (less than 5.5) and low calcium concentrations. Phosphate rock applications made to soils with pH greater than 5.5 may not be effective because of reduced PR solubility. Manure- and compost-based P has high plant availability, ranging from 70% to 100% available. Use of manures and composts requires extra considerations to reduce the risk of P loss from P sources to surface waters. Best management practices (BMPs) for reducing source P losses are incorporation of the manures or composts and timing applications to correspond to periods of low runoff risk based on climatic conditions. Organic production systems that use manures and composts as their primary N source should focus on minimizing P buildup in the soils and use of management practices that reduce the risks of P loss to surface waters. Evaluation of P loss risk with a P index will assist in identification of soil and management factors likely to contribute to high P loss as well as BMPs that can decrease P loss risks. BMPs should focus on controlling both particulate and dissolved P losses.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3