Eleven-year Correlation of Physical Fruit Texture Traits between Computerized Penetrometers and Sensory Assessment in an Apple Breeding Program

Author:

Teh Soon Li1,Brutcher Lisa1,Schonberg Bonnie1,Evans Kate1

Affiliation:

1. 1Tree Fruit Research and Extension Center, Washington State University, 1100 North Western Avenue, Wenatchee, WA 98801

Abstract

Fruit texture is a major target of apple (Malus domestica) breeding programs due to its influence on consumer preference. This multitrait feature is typically rated using sensory assessment, which is subjective and prone to biases. Instrumental measurements have predominantly targeted firmness of the outer region of fruit cortex using industry standard Magness–Taylor-type penetrometers, while other metrics remain largely unused. Additionally, there have been limited reports on correlating sensory attributes with instrumental metrics on many diverse apple selections. This report is the first to correlate multiyear historical fruit texture information of instrumental metrics and sensory assessment in an apple breeding program. Through 11 years of routine fruit quality evaluation at the Washington State University apple breeding program, physical textural data of 84,552 fruit acquired from computerized penetrometers were correlated with sensory assessment. Correlations among various instrumental metrics are high (0.63 ≤ r ≤ 1.00; P < 0.0001). In correlating instrumental outputs with sensory data, there is a significant correlation (r = 0.43; P < 0.0001) between the instrumental crispness value and sensory crispness. Additionally, instrumental hardness traits are significantly correlated (0.61 ≤ r ≤ 0.69; P < 0.0001) with sensory hardness. Outputs from two versions of computerized penetrometers were tested and shown to have no statistical differences. Overall, this report demonstrates potential use of instrumental metrics as firmness and crispness estimates for selecting apples of diverse backgrounds in a breeding program. However, in testing a large number and diversity of fruit, experimenters should perform data curation and account for lower limits/thresholds of the instrument.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3