Subirrigation: Historical Overview, Challenges, and Future Prospects

Author:

Ferrarezi Rhuanito Soranz1,Weaver Geoffrey Matthew2,van Iersel Marc W.2,Testezlaf Roberto3

Affiliation:

1. 1Agricultural Experimental Station, University of the Virgin Islands, RR#1 Box 10,000, Kingshill, VI 00850

2. 2Department of Horticulture, University of Georgia, 1111 Miller Plant Science Building, Athens, GA 30602

3. 3School of Agricultural Engineering, University of Campinas, 501 Candido Rondon Street, Campinas, SP 13083-875, Brazil

Abstract

Subirrigation is a greenhouse irrigation method that relies on capillary action to provide plants with water and nutrients from below their containers. The first documented subirrigation system was described in 1895, and several variations on the basic design were used for research purposes before the modern ebb-and-flow type systems emerged in 1974. Most subirrigation systems apply the fertilizer solution to a waterproof bench or greenhouse section, allowing the substrate to absorb the water through holes in the bottom of the containers. Because there is little or no leaching, subirrigation typically allows for the use of lower fertilizer solution concentrations. Although excess fertilizer salts typically accumulate in the top layer of the substrate, this does not seem to have a negative impact on plants. Subirrigation can conserve nutrients and water, reduce labor costs, and help growers meet environmental regulations. A challenge with subirrigation is the potential spread of pathogens via the fertilizer solution. When this is a concern, effective disinfection methods such as ultraviolet radiation, chlorine, or ozone should be used. Sensor-based irrigation control has recently been applied to subirrigation to further improve nutrient and water use efficiencies. Better control of irrigation may help reduce the spread of pathogens, while at the same time improving crop quality. The primary economic benefit of subirrigation is the reduction in labor costs, which is the greatest expenditure for many growers.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3