Determination of Strawberry Nutrient Optimum Ranges through Diagnosis and Recommendation Integrated System Analysis

Author:

Bottoms Thomas G.1,Bolda Mark P.2,Gaskell Mark L.3,Hartz Timothy K.1

Affiliation:

1. 1Department of Plant Sciences, University of California, Davis, CA 95616

2. 2University of California Cooperative Extension, Watsonville, CA 95076

3. 3University of California Cooperative Extension, San Luis Obispo, CA 93401

Abstract

Diagnosis and recommendation integrated system (DRIS) leaf blade and petiole optimum nutrient ranges were developed through tissue sampling in 53 commercial strawberry (Fragaria ×ananassa) fields in the coastal valleys of central California in 2010 and 2011. All fields were in an annual production system using the day-neutral cultivar Albion. Leaf blades and petioles were sampled five times from early flowering through the fruit harvest period. Data on soil nutrient availability and grower fertilization practices were also collected. DRIS analysis was used to develop nutrient optimum ranges based on nutrient concentrations observed in nutritionally balanced, high-yield fields. Blade nitrogen (N), phosphorus (P), and potassium (K) concentrations declined from the vegetative stage until the main harvest period, and stabilized thereafter. Blade calcium (Ca), boron (B), and iron (Fe) increased over time while magnesium (Mg), sulfur (S), manganese (Mn), zinc (Zn), and copper (Cu) decreased. The blade N optimum range was lower than previously published sufficiency ranges during the fruit harvest period, and the Zn optimum range was lower throughout the season. Other nutrients were in general agreement with previously established sufficiency ranges with the exception of Ca, Mn, and Fe, which were higher. Petiole nitrate-nitrogen (NO3-N) was highly variable among high-yield fields, was not correlated with soil NO3-N at any growth stage, and was therefore of limited value as an indicator of crop N status. Comparison of soil nutrient availability with grower fertilization practices suggested that significant improvement in fertilizer management was possible.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3