Protected Fresh Grapefruit Cultivation Systems: Antipsyllid Screen Effects on Plant Growth and Leaf Transpiration, Vapor Pressure Deficit, and Nutrition

Author:

Ferrarezi Rhuanito S.1,Wright Alan L.1,Boman Brian J.1,Schumann Arnold W.1,Gmitter Fred G.1,Grosser Jude W.1

Affiliation:

1. 1Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945

Abstract

Completely enclosed screen houses can physically exclude contact between the asian citrus psyllid [ACP (Diaphorina citri)] and young, healthy citrus (Citrus sp.) trees and prevent huanglongbing (HLB) disease development. The current study investigated the use of antipsyllid screen houses on plant growth and physiological parameters of young ‘Ray Ruby’ grapefruit (Citrus ×paradisi) trees. We tested two coverings [enclosed screen house and open-air (control)] and two planting systems (in-ground and container-grown), with four replications arranged in a split-plot experimental design. Trees grown inside screen houses developed larger canopy surface area, canopy surface area water use efficiency (CWUE), leaf area index (LAI) and LAI water use efficiency (LAIWUE) relative to trees grown in open-air plots (P < 0.01). Leaf water transpiration increased and leaf vapor pressure deficit (VPD) decreased in trees grown inside screen houses compared with trees grown in the open-air plots. CWUE was negatively related to leaf VPD (P < 0.01). Monthly leaf nitrogen concentration was consistently greater in container-grown trees in the open-air compared with trees grown in-ground and inside the screen houses. However, trees grown in-ground and inside the screen houses did not experience any severe leaf N deficiencies and were the largest trees, presenting the highest canopy surface area and LAI at the end of the study. The screen houses described here provided a better growing environment for in-ground grapefruit because the protective structures accelerated young tree growth compared with open-air plantings while protecting trees from HLB infection.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3