Moisture Content Measurements of Green Roof Substrates Using Two Dielectric Sensors

Author:

Kargas George1,Ntoulas Nikolaos2,Nektarios Panayiotis A.2

Affiliation:

1. 1Laboratory of Agricultural Hydraulic, Department of Natural Resources Management and Agricultural Engineering, Division of Water Resources Management, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece

2. 2Laboratory of Floriculture and Landscape Architecture, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece

Abstract

Little is known about the accuracy of soil moisture dielectric sensors in coarse-textured root zones and green roof substrates. In the present study, the accuracy of two dielectric sensors of different technologies (frequency domain and time domain dielectric sensor) in measuring moisture content was investigated in six coarse-textured green roof substrates. Calibration equations were developed for both sensors, and the effect of electrical conductivity (EC) on substrate moisture content calculation was determined. It was found that for frequency domain sensor the relationship between dielectric permittivity square root () and actual substrate moisture content (θm) was strongly linear for all tested substrates. However, for each substrate a distinct specific calibration equation of was required. The correlation between substrate permittivity and EC was linear for frequency domain sensor for all moisture levels (0% to 35%). In the case of time domain sensor, each green roof substrate was also described from a different calibration curve between actual substrate moisture content and period of time that was recorded by the device. It was found that their relationship was quadratic for all substrates. In addition, time domain sensor output responded in a quadratic manner to increasing levels of EC. This response was found to interact with actual substrate moisture content as well. It was concluded that the most reliable results for moisture content determination of the coarse-textured green roof substrates were obtained by substrate-specific calibration curves for both dielectric sensors.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3