Novel Low Tunnel Coverings and Plant Type Affect Productivity of Day-neutral Strawberries

Author:

Gaisser Richard1,Kuehn Kaspar1,Pritts Marvin1

Affiliation:

1. Horticulture section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14886, USA

Abstract

Growers producing day-neutral strawberries (Fragaria ×ananassa) in temperate climates face challenges when attempting to extend the season and mitigate the effects of rain. Conventional plastic coverings over low tunnels have been used for these purposes, but they often exacerbate heat-induced problems in summer. We examined two approaches for addressing this challenge. The first was to start dormant bare root ‘Albion’ strawberry plants in small pots in the greenhouse, then plant them into the field in spring so they could begin production before the onset of consistently high temperatures. Plants set in small pots on 26 Feb in the greenhouse and field planted on 6 May were compared with bare root plants set directly into the field on 6 May. The second approach used various low tunnel coverings to modify the light and temperature environment around the plants. Three coverings were woven nets embedded with reflective strips at various densities that allowed 50%, 60%, and 70% light transmission, and these were intended to lower temperatures under the covers by reflecting infrared radiation. A fourth covering was a polyethylene plastic embedded with optically active additives that shift incident light into wavelengths that are more photosynthetically active. Two other covers were standard commercial polyethylene plastics, and the final treatment was an uncovered control. Over the 2020 and 2021 growing seasons (hot and dry vs. moderate and wet, respectively), plots were harvested once or twice a week from June through October and fruit yield, size, and marketability were assessed. In both years, strawberry plants started in the greenhouse produced significantly higher yields than bare root plants over the season (30.5% and 43.7%). Bare root plants were less responsive to cover type than greenhouse plants. In 2020, yields tended to be higher in the middle of summer in plots with reflective coverings that reduced temperature and higher later in the season with coverings of wavelength-shifting film. Polyethylene covers that increased temperature without shifting the light spectrum had lower yields. Under the cooler conditions of 2021, plants under covers that increased temperature tended to have higher yields. In a third year (2023), bare root plants were covered with a reflective covering from 29 Jun until 1 Sep, then this cover was replaced with polyethylene with optical additives as the weather cooled and light levels dropped. This sequenced treatment was compared with uncovered plots and plots covered with standard commercial polyethylene plastic. Plants under the two-phase sequential covering performed significantly better than uncovered plots or those covered with standard polyethylene plastic alone.

Publisher

American Society for Horticultural Science

Reference14 articles.

1. Low tunnel covering and microclimate, fruit yield, and quality in an organic strawberry production system;Anderson HC,2019

2. Day-neutral strawberry production for season extension in the midsouth;Ballington JR,2008

3. Planting density and date affect productivity and profitability of Chandler, Tribute, and Tristar in strawberry plasticulture;Fiola J,1995

4. Preharvest effects on postharvest quality of spring-planted, day-neutral strawberries in high tunnels;Gude K,2018

5. Low tunnels as a strawberry breeding tool and season-extending production system;Lewers K,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3