Studying the Effects of Waterhemp Competition on Yield and Phytochemical Content of High-cannabidiol Hemp in Plasticulture

Author:

Shikanai Avery1,Gage Karla L.12

Affiliation:

1. 1School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901

2. 2School of Agricultural Sciences/Cannabis Science Center, Southern Illinois University Carbondale, 1205 Lincoln Drive, Carbondale, IL 62901

Abstract

The impacts of weed interference on hemp (Cannabis sativa) yield are largely unstudied despite causing serious economic losses in most cropping systems. For high-cannabidiol (CBD) hemp, understanding the role of weed competition on CBD and tetrahydrocannabinol (THC) content may help promote profitability and regulatory compliance. Therefore, we tested the effects of varying waterhemp [Amaranthus tuberculatus (zero, one, three, and five waterhemp plants per planting hole)] and hemp (zero or one hemp plants per planting hole) planting densities on total hemp yield, chemical composition, and aboveground waterhemp biomass in plasticulture. There was no significant total biomass or stripped floral biomass yield loss resulting from waterhemp competition, although unexpectedly high variation in hemp phenotypes likely limited the ability to detect subtle differences between treatments. Furthermore, there was no significant effect of competition treatment on total CBD, total THC, or measured terpene composition. However, waterhemp biomass was reduced significantly by competition from hemp in comparison with hemp-free treatments. Suppression of waterhemp by hemp and lack of significant yield loss suggest that hemp can be highly competitive and grown successfully without herbicides in certain circumstances.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3