Increased Leaching Requirements Allow the Use of Source Water High in Salts for Plant Growth

Author:

Moore Kimberly1,Burgart Cristina1,Shawaqfeh Samar2,Fisher Luci1,McMillan Mica1

Affiliation:

1. University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, FL 33314, USA

2. Department of Plant Production and Protection, College of Agriculture Jerash University, 26150 Jerash, Jordan

Abstract

Growers have different capabilities to alleviate salt stress in the growing substrate. One method to reduce substrate salt levels is to increase the volume of water applied during irrigation. This increases the leaching fraction (LF) which is the volume of water that drains from the growing substrate divided by the volume applied during irrigation. We can determine the leaching requirement (the minimum LF to maintain a desired substrate salt level) using the formula LF = ECw/5(ECe − ECw), where ECw is the electrical conductivity (EC) of the water and ECe is the desired EC of the substrate. We tested this formula to see if we could maintain an acceptable substrate EC of 4 dS⋅m−1 by modifying the LF for ‘Hope’ philodendron (Philodendron selloum) and ‘Tineke’ ficus (Ficus elastica) irrigated with tap water (EC 0.17 dS⋅m−1) or reclaimed wastewater (RWW) from Davie, FL, USA (EC 1.66 dS⋅m−1) and RWW from Hollywood, FL, USA (EC 2.93 dS⋅m−1). Shoot and root dry weight was greatest for both species with the tap water applied with a 5% LF. Increasing the LF to 15% for Davie RWW and a 55% for Hollywood RWW, produced acceptable growth for ‘Hope’ philodendron and ‘Tineke’ ficus. In our second experiment, we monitored the growth of ‘Looking Glass’ begonia (Begonia fibrous), ‘Freddie’ calathea (Calathea concinna), and ‘Déjà vu’ philodendron (Philodendron selloum) irrigated with tap water (EC 0.15 dS⋅m−1), salt water (EC 3.49 dS⋅m−1), or RWW (EC 3.48 dS⋅m−1) with LFs of 28%, 50%, or 65%. ‘Looking Glass’ begonia and ‘Freddie’ calathea growth was greater with 65% LF than 28% LF, respectively, for all three water sources. Philodendron growth was not different due to LF. However, philodendron, calathea, and begonia growth was greater with tap water and RWW than with saltwater. Although final leachate EC with saltwater and RWW was around 2 dS⋅m−1 using 50% LF, leachate sodium (Na) levels from salt watered plants was higher than for RWW or tap watered plants. We suspect that high Na levels in combination with lower potassium (K) and calcium (Ca) levels in the saltwater solution resulted in poor plant growth. Although the Na levels in leachate from RWW substrates was higher than tap watered substrates, Ca and K levels also were greater. Although we were able to use the salt equation to maintain substrate EC levels ranging from 2 to 4 dS⋅m−1, volumes of solution applied were two to three times higher when using RWW or salt water compared with tap water. We suspect that a balance between Na, Ca, and K supported better plant growth with RWW than salt water. However, additional work needs to be done on the benefits of supplemental Ca and K when using water high in salts or Na. This works suggests that in addition to monitoring EC, it also is important to monitor Na, Ca, and K concentrations.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3