EXAMINATION OF DIFFERENT MODELS OF TROPOSPHERE DELAYS IN SBAS POSITIONING IN AERIAL NAVIGATION

Author:

KRASUSKI Kamil,KIRSCHENSTEIN Małgorzata

Abstract

This paper presents the results of a study on the use of different tropospheric correction models in SBAS positioning for air navigation. The paper, in particular, determines the influence of the Saastamoinen troposphere and RTCA-MOPS models on the determination of aircraft coordinates and mean coordinate errors in the SBAS positioning method. The study uses real kinematic data from a GPS navigation system recorded by an onboard GNSS satellite receiver as well as SBAS corrections. In the experiment, the authors include SBAS corrections from EGNOS and SDCM augmentation systems. The navigation calculations were performed using RTKLIB v.2.4.3 and Scilab 6.1.1 software. Based on the conducted research, it was found that the difference in aircraft coordinates using different troposphere models can reach up to ±2.14 m. Furthermore, the use of the RTCA-MOPS troposphere model improved the values of mean coordinate errors from 5 to 9% for the GPS+EGNOS solution and from 7 to 12% for the GPS+SDCM solution, respectively. The obtained computational findings confirm the validity of using the RTCA-MOPS troposphere model for SBAS positioning in aerial navigation.

Publisher

Silesian University of Technology

Subject

Mechanical Engineering,Transportation,Aerospace Engineering,Automotive Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3