DIAGNOSING FAULTS IN THE TIMING SYSTEM OF A PASSENGER CAR SPARK IGNITION ENGINE USING THE BAYES CLASSIFIER AND ENTROPY OF VIBRATION SIGNALS

Author:

CZECH Piotr

Abstract

Today's systems for diagnosing the technical condition of machines, including vehicles, use very advanced methods of acquiring and processing input data. Presently, work is being conducted globally to solve related problems. At the moment, it is not yet possible to create a single procedure that would enable the construction of a properly functioning diagnostic system, regardless of the selected object to be diagnosed. Hence, there is a need to conduct further research into the possibility of using already developed methods, as well as their modification to other diagnostic cases. This article presents the results of research related to the use of the Bayes classifier for diagnosing the technical condition of passenger car engine components. Damage to the exhaust valve of a spark ignition engine was diagnosed. The source of information on the technical condition was vibration signals recorded at various measuring points and under different operating conditions of the car. To describe the nature of changes in the vibration signals, the entropy measures were determined for the decomposed signal using the discrete wavelet transform is proposed.

Publisher

Silesian University of Technology

Subject

Mechanical Engineering,Transportation,Aerospace Engineering,Automotive Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3