Low-Crystallinity Index Chalcedony from Longhua, China: Characteristics and Formation

Author:

Yan Qiuli1,Shi Guanghai12ORCID

Affiliation:

1. 1 School of Gemology, China University of Geosciences, Beijing, 100083, China

2. 2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China

Abstract

Abstract A low-crystallinity index chalcedony was found in the rhyolitic ignimbrite of the Late Jurassic Zhangjiakou Formation, located in Longhua County, Hebei Province, China. This chalcedony occurs as fillings along the fragile fractures of the host rock and is distinct from any other chalcedony deposits, such as the known basalt and carbonate-related types. The host rock is rhyolitic ignimbrite, comprising sanidine (50–70 vol.%), plagioclase (10–15 vol.%), quartz (8–10 vol.%), magnesian biotite (3–5 vol.%), and accessory minerals. The chalcedony appears as long lenticular veins and irregular-shaped bodies, occasionally containing small fragments of the surrounding rock at the boundary. It is colored in yellow, red, and/or white/colorless, with physical properties of specific gravity 2.55–2.56, reflection index of 1.54, Mohs hardness of 6.07–6.34, and weight loss of 1.97%–2.32% by heating. From the boundary to the inner center, its growth structure changes from comb-like macrocrystalline quartz to thin fiber crystallites and then to a relatively uniform cryptocrystalline phase, indicating precipitation from a crystalline to the cryptocrystalline sequence. Electron probe and Raman spectroscopy analyses reveal that the component minerals of the chalcedony are α-quartz and moganite and that the red inclusions are hematite. Quartz in chalcedony exhibits platelet shapes with tiny pores, which are cemented by nanograins, and such a structure is closer to that of opal. It’s crystallinity indexes (CIs) range ~1–3, as indicated by the X-ray diffraction patterns. This low CI and structural features, together with its occurrence, suggest a low temperature of 40°C–80°C during its formation. All these properties show a distinction from those of the most reported chalcedonies. This chalcedony is interpreted as an intermediate transitional type from normal chalcedony to opal, shedding new light on understanding microcrystalline silica mineral aggregate and exploration for a similar gem deposit.

Publisher

GeoScienceWorld

Subject

Geology

Reference55 articles.

1. “Nomenclature of Micro- and non-crystalline silica minerals, based on structure and Microstructure,”;Flörke;Neues Jahrbuch Für Mineralogie-Abhandlungen,1991

2. “First direct evidence for natural occurrence of colloidal silica in chalcedony-hosted Vacuoles and implications for ore-forming processes,”;Prokofiev;Geology,2017

3. “Characterization of the Sündikendağı deposit of moganite-rich, blue chalcedony nodules, Mayıslar–Sarıcakaya (Eskişehir), Turkey,”;Hatipoğlu;Ore Geology Reviews,2013

4. “Thermal properties of gem-quality moganite-rich blue chalcedony,”;Hatipoğlu;Physica B,2010

5. “Gemological classification and identification characteristic of agate,”;Xia;Mineralogy and Petrology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3